Unemployment Insurance and Mandatory Notice

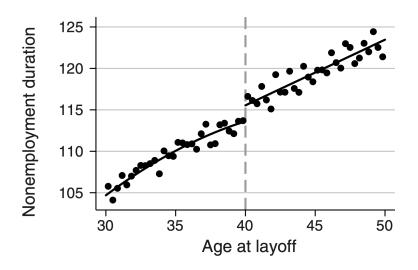
David Seim Stockholm University

Public Economics

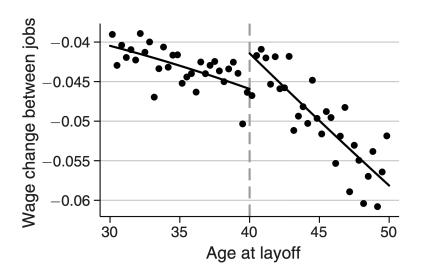
December 2023

Unemployment Insurance

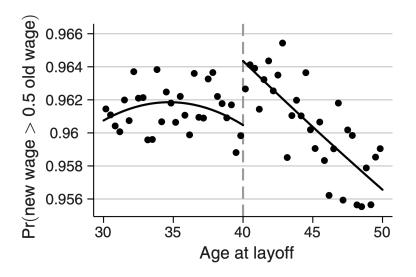
- Lots of empirical work on labor supply effect of social insurance (Krueger and Meyer, 2002)
 - Early literature used cross-sectional variation in replacement rates.
 Problem: compare high and low wage earners, whose employment prospects may be very different!
 - Solution: modern methods, DD/ IV in late 80s/early 90s
 - Most recent methods use kinks in unemployment policy and discontinuities depending on age, work-history...
- Evidence suggests unemployment elasticities ε in range [0.5, 1.5]; high relative to other labor supply estimates.

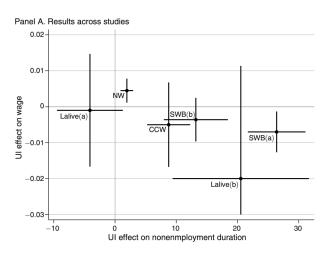

 Nekoei Weber, (AER 2017): What is the wage impact of longer potential benefit duration in UI?

Empirical setting: Austria.


PBD = 30 weeks for ages \leq 40; 39 weeks for ages > 40.

- Age-based discontinuities for UI duration also exploited by Schmieder, von Wachter and Bender (2016) in **Germany**.
- Theoretically, PBD ↑:
 - i. Selective search → wages ↑;
 - ii. Stay unemployed longer → job opportunities ↓;
- Empirically, PBD ↑ can increase or decrease wage effect depending on which force dominates.


Effect of PBD on non-employment


Effect of PBD on wage

Effect of PBD on wage

Meta-analysis

What About LHS of Baily-Chetty?

- Measuring value of SI is challenging good is not traded in a well-functioning market.
 - ⇒ hard to assess the willingness to pay.
- Value depends on agents' means to smooth consumption:

$$c_u = b + savingsc_e$$
 = $w - \tau - savings$

- Private means: Use savings when unemployed; borrow from banks and family.
- Empirically, most have no savings and face borrowing constraints.
 - Savings: Engen Gruber '95
 - Added worker: Cullen and Gruber '00

Gruber '97

- Classic paper: Uses surveyed data on consumption from PSID.
- Today, better alternatives:

Imputed consumption: Kolsrud et al. (2015) Bank account data: Ganong and Noel (2019)

- Gruber ran regression:

$$\left(\frac{c_{e}-c_{u}}{c_{e}}\right)_{i,i,t} = \beta_{1} + \beta_{2} \left(\frac{b}{w}\right)_{i,j,t} + \beta_{3} \delta_{j} + \beta_{4} \tau_{t} + \varepsilon_{i}$$

- and obtained $\hat{\beta}_1 = 0.24$; $\hat{\beta}_2 = -0.28$.
 - ⇒ Without UI, consumption falls by 24 %.
 - \Rightarrow A 10 pp increase in the replacement rate \rightarrow consumption drop \downarrow by 2.8 pp.
 - \Rightarrow Current replacement rate (b/w = 0.5) implies c-drop of 10%.
- Is current level optimal?

Calibrating the model

- Baily-Chetty formula:

$$\gamma \frac{\Delta c}{c} \approx \varepsilon$$
$$\gamma \left(\beta_1 + \beta_2 \frac{b^*}{w} \right) = \varepsilon$$

- Rearrange and solve for optimal replacement rate (using midpoint of elasticities, $\varepsilon = 0.5$.

$$\frac{b^*}{w} = \frac{\varepsilon_{D,b}}{\beta_2} \frac{1}{\gamma} - \frac{\beta_1}{\beta_2}$$
$$= \frac{0.5}{-0.28} \frac{1}{\gamma} - \frac{0.24}{-0.28}$$

- Note that the elasticity may itself depend on b^* .

Summary

- Results: Optimal replacement rate $\frac{b^*}{w}$ varies tremendously with γ :

$$\frac{\gamma}{w}$$
 1 (linear utility) 2 3 4 5 10 0 0.20 0.41 0.50 0.68

- Lesson from Gruber:
- i. Moral hazard responses high relative to consumption smoothing gains.
- ii. Surprising and very much against current practice.
 - Challenged in later work:

Kolsrud et al. '15'; Ganong and Noel '17: Unemployed are "hand-to-mouth"

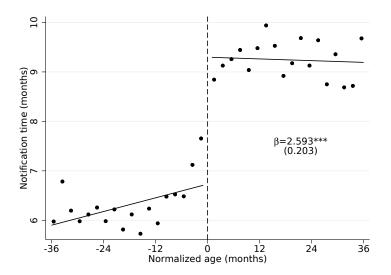
Alternative Policies to Help Laid Off Workers

- Mandatory Notice (Cederlöf, Fredriksson, Nekoei and Seim, '23)
- Institutional Background:
 - ∘ Swedish labor law \rightarrow MN ∈ {1, 2, 3, 4, 5, 6} months, based on tenure.
 - Collective Bargaining Agreements extend them.
 - Private-sector white-collar workers above age 55 → 6 months extension

Empirical Strategy:

- Regression Discontinuity Design at age 55
- o Identification Assumption:
 - o Age at displacement random.
 - Checks?
 - McCrary-test; Balance-tests.

MN Effect on Notice Period

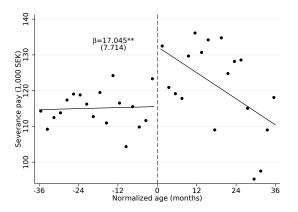

Data:

- Measurement of notification periods:
 - De Jure notice: Legal notice period (varies by tenure and age)
 - De Facto notice: Actual notice period (notification and planned termination dates over 2005-2016)
 - Duration after notice: Time from notice until spell termination.
- Typical administrative records:
 - Unemployment spell data;
 - Employer-employee match data;
 - Labor Force Survey search measure;
 - Wage data Firm reported, stratified sample, 50% of private sector

Estimation Sample:

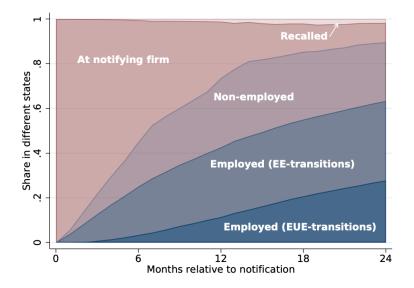
- 10k individuals around age 55.
- 44% female; Mean tenure = 8 yrs; 38% college-educated; 30% manufacturing.

MN Effect on Notice Period

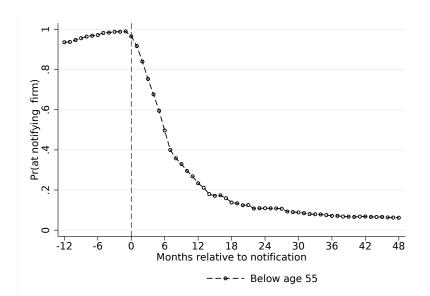


Running variable: Age at notification (in months)

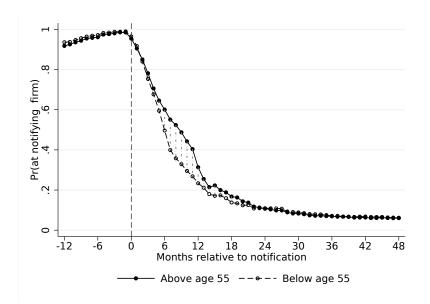
MN Effect on Severance Pay

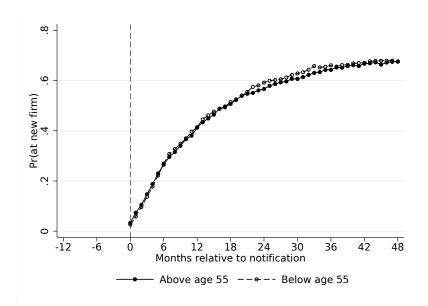

o Measurement:

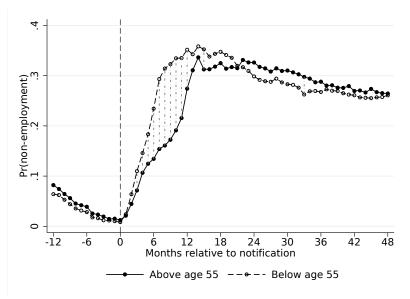
- i. Estimate monthly wage from previous years.
- ii. Subtract predicted earnings from actual earnings.
- iii. Measure includes other compensations → Differenced out at discontinuity.



→ Monetary side payments used to undo Mandatory Notice Lazear (1990)


MN Effect on Prob. Working at Notifying Firm


MN Effect on Prob. Working at Notifying Firm


MN Effect on Prob. Working at Notifying Firm

MN Effect on Prob. Working at New Firm

MN Effect on Prob. of **Non-employment** (residual)

MN Effect on labor market states

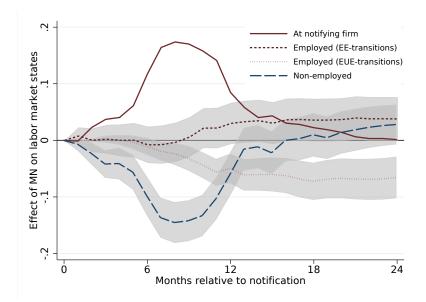
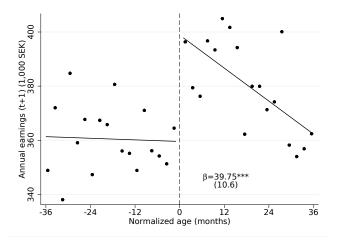


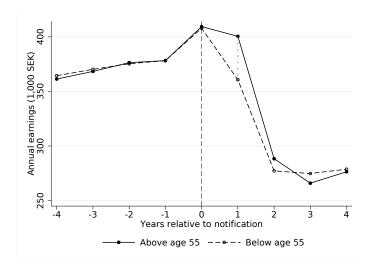
Table 2: Effect of MN on Employment Status Within Two Years

			,					
	Cumulated duration (months) within two years after notification							
	Notifying firm	New firm	Non-employment	Unemployment	Out of the LF			
	(1)	(2)	(3)	(4)	(5)			
Above Age-55	1.322***	-0.145	-1.177***	-0.472*	-0.705***			
	(0.276)	(0.333)	(0.288)	(0.246)	(0.214)			
Control mean	7.859***	9.372***	6.769***	4.668***	2.100***			
	(0.217)	(0.253)	(0.212)	(0.178)	(0.147)			
Number of clusters	4,158	4,158	4,158	4,158	4,158			
Number of observations	10,275	10,275	10,275	10,275	10,275			


• MN has no effect on search duration (in contrast to UI).

MN Effect on Wages

		Pr(EE)			
	ln(w)	ln(w)	$\Delta \ln(w)$	$\Delta \ln(w)$ $EE = 1, t \leqslant 6$	
	(1)	(2)	(3)	(4)	(5)
Above Age-55	0.029**	0.034**	0.032**	0.045*	0.075**
	(0.014)	(0.016)	(0.016)	(0.027)	(0.037)
Control mean	10.201*** (0.010)	10.200*** (0.011)	-0.093*** (0.011)	-0.077*** (0.019)	0.566*** (0.027)
Number of clusters	2,229	1,713	1,353	561	1,713
Number of observations	3,932	2,752	2,276	749	2,752


 $[\]circ\,$ Wages in the first new job w/n 2 yrs \uparrow

MN Effect on Earnings in Calendar Year After

• MN effect on earnings in year 1: 39.75 kSEK $\simeq 1.56m$ earnings

No Earnings Effects Beyond the First Year

- RD-estimates for each year around notification (dashed lines: stat sign. at 95%)
- o increase in t = 0 for both T & C due to severance pay

Decomposition of the Earnings Effect

• Decompose the effect of longer MN over fixed period (T = 2yrs) as

$$\underbrace{\Delta y}_{\text{Earnings effect of MN}} = \underbrace{\Delta \left(w_0 l_0\right)}_{\text{Old job}} + \underbrace{\Delta \left(w_1 l_1\right)}_{\text{New job}} + \underbrace{\Delta SP}_{\text{Severance pay}},$$

where w_0 (w_1) wage of old (new) job & l_0 (l_1) its duration within 2 years.

Using $\Delta w_0 = 0$ and $T = l_0 + NE + l_1$, where NE denotes non-employment duration

Earnings effect of MN

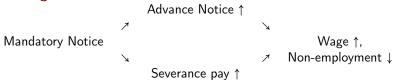
$$\begin{array}{c}
\frac{\Delta y}{w_0} = -\underbrace{\Delta NE}_{\text{non-emp duration}} - \underbrace{\frac{w_0 - w_1}{w_0}}_{\text{olsp. wage loss}} \underbrace{\frac{\Delta l_1}{w_0}}_{\text{new job dur.}} + \underbrace{\frac{\Delta SP}{w_0}}_{\text{wage-effect}} \underbrace{\frac{\Delta SP}{w_0}}_{\text{wage-effect}} + \underbrace{\frac{\Delta SP}{w_0}}_{\text{various}} + \underbrace{\frac{\Delta SP}{w_0}}_{\text{olsp. effect to f MN}} + \underbrace{\frac{\Delta SP}{w_0}}_{\text{one-emp duration}} + \underbrace{\frac{\Delta SP}{w_0}}_{\text{olsp. effect to f MN}} + \underbrace{\frac{\Delta SP}{w_0}}_{\text{one-emp duration}} + \underbrace{\frac{\Delta SP}{w_0}}_{\text{olsp. effect to f MN}} + \underbrace{\frac{\Delta SP}{w_0}}_{\text{olsp. effect to f M$$

Decomposition of the Earnings Effect

• Decompose the effect of longer MN over fixed period (T = 2yrs) as

$$\underbrace{\Delta y}_{\text{Earnings effect of MN}} = \underbrace{\Delta (w_0 l_0)}_{\text{Old job}} + \underbrace{\Delta (w_1 l_1)}_{\text{New job}} + \underbrace{\Delta SP}_{\text{Severance pay}}$$

where w_0 (w_1) wage of old (new) job & l_0 (l_1) its duration within 2 years.


• Using $\Delta w_0 = 0$ and $T = l_0 + NE + l_1$, where NE denotes non-employment duration

$$\frac{\Delta y}{w_0} = -\underbrace{\Delta NE}_{\text{non-emp duration}} - \underbrace{\frac{W_0 - W_1}{W_0}}_{\text{disp. wage loss}} \underbrace{\Delta l_1}_{\text{new job dur.}} + \underbrace{\frac{\Delta W_1}{W_0}}_{\text{new job dur.}} + \underbrace{\frac{\Delta SP}{W_0}}_{\text{wage-effect}}$$

$$\underbrace{\frac{1.56 \text{months}}{W_0}}_{\text{Earnings effect of MN non-emp duration}} + \underbrace{\frac{\Delta SP}{W_0}}_{\text{disp. effect}} + \underbrace{\frac{35\%}{W_0}}_{\text{wage}} + \underbrace{\frac{35\%}{W_0}}_{\text{Severance-pay}}$$

Separating the Effects of Advance Notice & Severance Pay

Challenge:

- Not possible to isolate notice channel.
- o Additional instrument: Age 55 discontinuity among colleagues.
- Intuition: Spill-over of long MN to non-eligible colleagues

Separating AN and SP effects

- Wage effect relative to UI; Card et. al 2007 Schmieder, et al 2013 Nekoei & Weber 2017
 - Much larger.

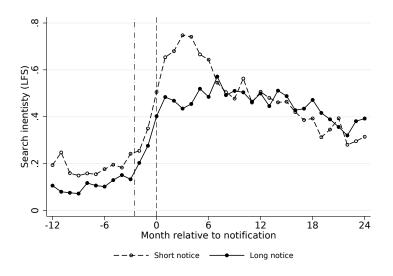
Panel (a):	First-stage estimates		Reduced-form (RF) estimates				
	Notification time (months)	Severance (1,000 SEK)	Search	Months until	Non-employment (months)	$\Delta ln(w)$	
	(1)	(2)	(3)	(4)	(5)	(6)	
Above age-55	2.593***	18.458**	-0.222***	0.112	-1.176***	0.035**	
	(0.193)	(7.307)	(0.066)	(0.319)	(0.283)	(0.016)	
Share coworkers above 55	0.776	30.428***	-0.064	1.500***	1.813***	-0.002	
	(0.678)	(11.197)	(0.073)	(0.378)	(0.560)	(0.014)	
Panel (b):			2-IV estimates				
Notification time			-0.087**	-0.205	-0.621***	0.017**	
(months)			(0.038)	(0.241)	(0.161)	(0.008)	
Severance			-0.001	0.035***	0.051***	-0.0001	
(1,000 SEK)			(0.002)	(0.013)	(0.015)	(0.001)	
Joint F-statistic	90	8	21	26	29	5	
Number of clusters	4,285	4,212	4,011	4,060	4,285	2,564	
Number of observations (RF)	55,987	49,340	35,515	36,689	56,531	12,590	

Empirical Summary: Efficiency Considerations

- Efficiency effects of Mandatory Notice:
 - \circ MN $\uparrow \Rightarrow$ Advance notice $\uparrow \Longleftrightarrow$ MN improves efficiency.
 - Severance payments used to avoid production losses of early notice.
 - o Policy maker's worry: MN leads inefficient jobs to last.
 - o Our evidence mitigates this worry.
 - \circ MN $\uparrow \Rightarrow$ Non-employment \downarrow
 - \circ MN $\uparrow \Rightarrow$ Re-employment wages \uparrow
 - ∘ AN \uparrow ⇒ Non-employment \downarrow ; Wages \uparrow
 - \circ SP \uparrow \Rightarrow Non-employment \uparrow ; Wages \rightarrow

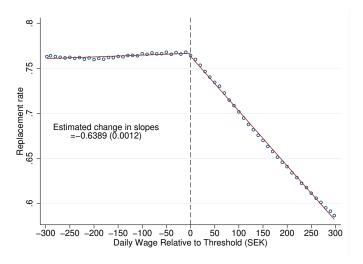
Reason for the Wage Effect

- Arrival rates of acceptable offers higher for the employed?
 - o Is it more efficient to search while employed?
- ∘ Let the hazard rate for $j \in \{e, u\}$ be:


$$h^j = \underbrace{\lambda^j}_{\text{arrival rate}} \times \underbrace{A^j}_{\text{Pr(acceptance)}} \times \underbrace{s^j}_{\text{search}}$$

- Estimate relative search efficiency, $\frac{\partial h^e}{\partial s^e} / \frac{\partial h^u}{\partial s^u}$, for employed and unemployed.
- Exploit two measures of search:
 - o Public Employment Service (PES) measure
 - o Number of meetings with unemployment officers.
 - Labor Force Survey (LFS) measure
 - o Have you searched in the past 4 weeks?
 - o If yes, how have you searched?
- Three research designs:
 - o 2-IV
 - OLS with individual-level FF.
 - Exogenous shifters of search in unemployment and employment.

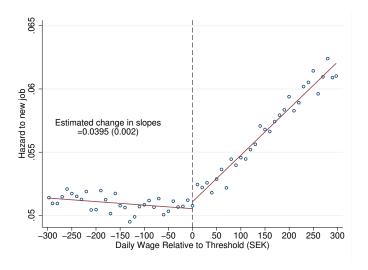
Search After Notification



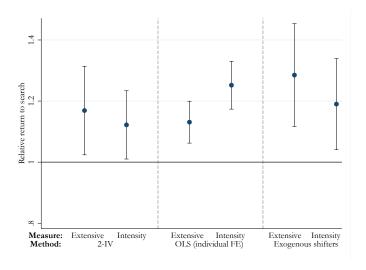
Search After Notification: By Advance Notice



Exogenous Search: Unemployed


o For unemployed: Leverage kinked benefit schedule:

Exogenous Search: Unemployed



Exogenous Search: Unemployed

Search increases the job-finding rate as unemployed by 11.5ppt.
 Comparison for employed is 16 ppt.

Relative Search Efficiency

Costs of MN: Lower Productivity

• Firm revenue:

$$Y_{it} = A_{it} (1 - \alpha \chi_{it}) L_{it}$$

- Productivity falls by a factor α among the share of labor under notice period, χ_t .
- Over time:

$$\Delta \log(Y_i) = \Delta \log A_i + \log (1 - \alpha \chi_{it})$$

• We estimate this as follows:

$$\Delta \log(Y_i) = \beta \chi_i + d_t + \delta_j + f(s_i) + g(m_i) + hX_i + \varepsilon_i$$

• where s_{it} = share laid-off workers; d time-FE; δ ind. FE; f and g are flexible functions of size of layoff and overall notice time.

$$\hat{\alpha} = (1 - \exp(\hat{\beta}\hat{\chi}))/\hat{\chi}.$$

Costs of MN: Lower Productivity

- \circ We use balance sheet data combined with information on layoffs and labor inputs to estimate the α 's.
- \circ Three versions of χ :
 - 1. Actual advance notice periods.
 - 2. Legislated mandated notice periods.
 - MN for those workers who would have been laidoff under the tenure-ranking rule.

MN Effect on **Productivity**

Table 7: The Productivity Loss of Notice

		Depende	nt variable		
	Δ	ln y	$\ln y - \sum_{t=-3}^{-1} \ln y_t / 3$		
	OLS	IV	OLS	IV	
	(1)	(2)	(3)	(4)	
Share of workers on notice (χ)	-0.275**	-0.469***	-0.290**	-0.465***	
	(0.111)	(0.161)	(0.118)	(0.162)	
Estimate of productivity loss (α)	0.272**	0.461**	0.287**	0.458***	
	(0.110)	(0158)	(0.116)	(0.160)	
First stage					
First-stage F		221.7		221.7	
Specification check (outcomes in $t-1$)					
Share of workers on notice (χ)	0.078	0.062	0.021	0.003	
	(0.088)	(0.121)	(0.060)	(0.081)	
Specification check (outcomes in $t-2$)					
Share of workers on notice (χ)	-0.033	-0.169	-0.055	-0.048	
	(0.100)	(0.135)	(0.048)	(0.065)	
Number of observations	3,218	3,218	3,218	3,218	

 $[\]circ \ \alpha_{post} \in [0.27, 0.46].$

Summary

- o Gains from MN > Losses.
- o Some MN optimal.
- Other lessons:
- 1. MN >> Severance Pay
- 2. Firms and workers sidestep inefficient legislation.
- 3. Job-search more effective from employment than from unemployment.
 - Why?
 - i. Connections from colleagues.
 - ii. Discrimination
 - iii. Induced to think about next job while working.